
Written Exam at the Department of Economics
Winter 2018–19

Advanced Microeconometrics

Final Exam

January 2nd, 2019 (13:00–16:00)

(3-hour closed book exam)

Answers only in English.

This exam question consists of 6 pages in total.

NB: If you fall ill during an examination at Peter Bangs Vej, you must contact
an invigilator who will show you how to register and submit a blank exam paper.
Then you leave the examination. When you arrive home, you must contact
your GP and submit a medical report to the Faculty of Social Sciences no later
than seven (7) days from the date of the exam.

Be careful not to cheat at exams!

You cheat at an exam, if during the exam, you:

� Make use of exam aids that are not allowed.

� Communicate with or otherwise receive help from other people.

� Copy other people’s texts without making use of quotation marks and
source referencing, so that it may appear to be your own text.

� Use the ideas or thoughts of others without making use of source refer-
encing, so it may appear to be your own idea or your thoughts.

� Or if you otherwise violate the rules that apply to the exam.

Note: The percentage weights indicated on each problem should only be re-
garded as indicative. The final grade will ultimately be based on an overall
assessment of the quality of the answers to the exam questions in their totality.
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Problem 1 (40%)

Consider the following random utility model, for a sample of N individuals:

yi = arg max
j∈{0,1}

{uij}, i = 1, . . . , N, (1)

uij = x′iβj + εij, for j = 0, 1, (2)

where the explanatory variables contained in the K × 1 vector xi influence

each level of utility through the K × 1 vector of regression coefficients βj, for

j = 0, 1.

The error terms are assumed to be independent and identically distributed

across observations, with a joint normal distribution:(
εi0

εi1

)
iid∼ N

([
0

0

]
,

[
σ2
0 σ01

σ01 σ2
1

])
. (3)

Question 1.1: Show that the probability of choosing alternative 1, for each

individual i = 1, . . . , N , is equal to

Pr(yi = 1 | xi, θ) = Φ

(
x′i(β1 − β0)√
σ2
0 + σ2

1 − 2σ01

)
, (4)

where θ = (β′0, β
′
1, σ

2
0, σ

2
1, σ01)

′, and Φ(·) denotes the cumulative distribu-

tion function (CDF) of the standard normal distribution.

Question 1.2: Using Eq. (4), derive the corresponding log-likelihood function

of the model for the whole sample of N individuals.

Question 1.3: Discuss the identification of the model. In particular, explain

precisely which parameter(s) can be identified, and which restrictions, if

any, are required to achieve identification.

Question 1.4: Using the identification strategy discussed in Question 1.3,

show that this random utility model with two alternatives can be ex-

pressed as a standard probit model. State the corresponding probit

model as part of your answer.
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Problem 2 (40%)

Consider the following linear regression model with two scalar regressors x1

and x2, for i = 1, . . . , N :

yi = x1iβ1 + x2iβ2 + εi, εi
iid∼ N

(
0, τ−1

)
, (5)

where the precision parameter τ = 1/σ2 is the inverse of the variance of the

error term. The observations are collected in the vectors y = (y1, . . . , yN)′,

x1 = (x11, . . . , x1N)′ and x2 = (x21, . . . , x2N)′.

The parameters of the model θ = (β1, β2, τ)′ are assumed to be a priori inde-

pendent, such that p(θ) = p(β1, β2, τ) = p(β1)p(β2)p(τ). An improper prior

is assumed on the regression coefficients, and a Gamma distribution on the

precision parameter:

p(β1) ∝ 1, p(β2) ∝ 1, τ ∼ G(a0, b0) , (6)

with a0 > 0 and b0 > 0, where the probability density function of the Gamma

distribution is

p(τ | a0, b0) =
1

Γ(a0)b
a0
0

τa0−1 exp

{
− τ
b0

}
, (7)

with Γ(·) denoting the Gamma function.

Question 2.1: Without deriving any conditional distributions, outline the

steps of a Gibbs sampler that can be implemented to draw the three

parameters of the model iteratively (i.e., in three different steps).

Be as precise as possible in the description of the sampler.

Question 2.2: Derive the conditional distribution p(τ | y, x1, x2, β1, β2).

Explain the concept of natural conjugacy, and explain why the Gamma

distribution assumed on τ is (or is not) a natural conjugate prior in this

model.
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Three different data sets with N = 100 observations and different levels of

correlation between the two regressors, ρ ≡ corr(x1, x2) ∈ {0.5, 0.9, 0.99}, are

generated from the model specified in Eq. (5).

The three-step Gibbs sampler outlined in Question 2.1 is run for 1,000 iter-

ations on each of these three data sets, with the same prior specification in

the three cases. The trace plots and autocorrelograms of the parameter β1 are

displayed in Fig. 2.1 for the three cases.

Question 2.3: Match each of the three cases shown in Fig. 2.1 to the three

data sets (i.e., the three different values of ρ). Explain intuitively the

differences observed between these three MCMC outputs.

Question 2.4: Explain precisely if and how you can use the random draws

of β1 shown in Fig. 2.1 to draw posterior inference about this parameter

in each of the three cases.

If these draws cannot be used, what would you have to change in the

implementation of the Gibbs sampler to be able to do posterior inference

on the parameters?

[Note: You do not need any additional information about the data generating

process, about the prior specification or about the configuration of the Gibbs

sampler to answer the last two questions.]
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Figure 2.1: Trace plots and autocorrelograms of the parameter β1 for the
three different cases.
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Problem 3 (20%)

Consider the following MATLAB function:

1 function [y,X,theta] = gen data(N,J,K)

2 theta = 2*rand(K,J-1)-1;

3 X = [ones(N,1), sqrt(2).*randn(N,K-1)];

4 V = [zeros(N,1), X*theta];

5 E = gevinv(rand(N,J));

6 U = V + E;

7 [maxU,y] = max(U,[],2);

8 end

Question 3.1: Express in mathematical terms what this function does. You

should just provide a few equations to answer this question. Be explicit

about the notation.

[Note: The MATLAB function gevinv() computes the inverse of the CDF

of the standard Gumbel distribution (type 1 extreme value distribution).]

Question 3.2: Describe briefly the econometric model that can be used to

fit the corresponding data, as well as an estimation method that can be

implemented to estimate the unknown parameters θ.
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